467 research outputs found

    Regional variation in the Amitsoq gneisses related to crustal levels during late Archean granulite facies metamorphism: Southern west Greenland

    Get PDF
    The dominant lithology at Kangimut sangmissoq is described as nebulitic tonalitic gneiss containing highly distended plagioclase phyric amphibolites. The gneiss amphibolite complex was intruded by Nuk gneiss between 3.05 and 2.90 Ga and later (2.6 to 2.7 Ga) by post granulite facies granitoid sheets. The amphibolites are though to be Ameralik dikes and the older gray gneiss are then Amitsoq by definition. The problem arises when the isotopic data are considered, none of which indicate rocks older that about 3.0 Ga

    Significance of the late Archaean granulite facies terrain boundaries, Southern West Greenland

    Get PDF
    Three distinct episodes and occurrences of granulite metamorphism in West Greenland are described: (1) the oldest fragmentary granulites occur within the 3.6-Ga Amitsoq gneisses and appear to have formed 200 Ma after the continental crust in which they lie (Spatially associated rapakivi granites have zircon cores as old as 3.8 Ga, but Rb-Sr, whole-rock Pb-Pb, and all other systems give 3.6 Ga, so these granulites apparently represent a later metamorphic event); (2) 3.0-Ga granulites of the Nordlandet Peninsula NW of Godthaab, developed immediately after crustal formation in hot, dry conditions, are carbonate-free, associated with voluminous tonalite, and formed at peak metamorphic conditions of 800 C and 7 to 8 kbar (Synmetamorphic trondhjemite abounds and the activity of H2O has been indicated by Pilar to have varied greatly); and (3) 2.8-Ga granulites south of Godthaab, lie to the south of retrogressed amphibolite terranes. Prograde amphibolite-granulite transitions are clearly preserved only locally at the southern end of this block, near Bjornesund, south of Fiskenaesset. Progressively deeper parts of the crust are exposed from south to north as a major thrust fault is approached. Characteristic big hornblende pegmatites, which outcrop close to the thrust in the east, have been formed by replacement of orthopyroxene. Comparable features were not seen in South Indian granulites. It was concluded that no one mechanism accounts for the origin of all granulites in West Greenland. Various processes have interacted in different ways, and what happened in individual areas must be worked out by considering all possible processes

    Strontium and neodymium isotopic variations in early Archean gneisses affected by middle to late Archean high-grade metamorphic processes: West Greenland and Labrador

    Get PDF
    Relicts of continental crust formed more than 3400 Ma ago are preserved fortuitously in most cratons. The cratons provide the most direct information about crust and mantle evolutionary processes during the first billion years of Earth history. In view of their polymetamorphic character, these terrains are commonly affected by subsequent tectonothermal events. Hence, their isotope systematics may be severely disturbed as a result of bulk chemical change or local isotopic homogenization. This leads to equivocal age and source information for different components within these terrains. The Sr and Nd isotopic data are presented for early Archean gneisses from the North Atlantic Craton in west Greenland and northern Labrador which were affected by younger metamorphic events

    Source of the northeastern Idaho batholith: isotopic evidence for a Paleoproterozoic terrane in the northwestern U.S.

    Get PDF
    The northeastern portion of the Idaho batholith (NIB) intruded Proterozoic rocks of the Belt-Purcell supergroup between SO and 90 Ma. Whole-rock Sm-Nd isotopic analyses of batholithic rocks yield depleted mantle model ages (T oM) between 1. 72 and 1.93 Ga and values of eNd between -17. 7 and - 21.2, similar to associated metamorphic rocks and within the range for Belt-Purcell sedimentary rocks. Premagmatic zircons from one sample of the NIB were analyzed individually using the SHRIMP ion microprobe and yielded a single age population at 1.74 Ga. This apparently single-aged source contrasts with the range of ages reported for zircons from sedimentary rocks of the Belt-Purcell supergroup and suggests that the batholith was not the product of melting Belt-Purcell sediments, nor was it significantly contaminated with these sediments. The source of the batholith, however, appears to be of appropriate age and composition to be a major contributor of sediment to the Belt basin. In addition, the near coincidence of TOM and the age derived from premagmatic zircons in one sample suggests the source of at least part of the batholith was extracted largely from 1.74 Ga depleted mantle, with little or no input from older rocks. If so, this crust may represent a possible continuation of crust of similar age and character exposed to the north in the Canadian cordillera and to the south in Nevada, Arizona, and southeastern California

    Earth's oldest mantle fabrics indicate Eoarchaean subduction

    Get PDF
    The extension of subduction processes into the Eoarchaean era (4.0-3.6 Ga) is controversial. The oldest reported terrestrial olivine, from two dunite lenses within the ~3,720 Ma Isua supracrustal belt in Greenland, record a shape-preferred orientation of olivine crystals defining a weak foliation and a well-defined lattice-preferred orientation (LPO). [001] parallel to the maximum finite elongation direction and (010) perpendicular to the foliation plane define a B-type LPO. In the modern Earth such fabrics are associated with deformation of mantle rocks in the hanging wall of subduction systems; an interpretation supported by experiments. Here we show that the presence of B-type fabrics in the studied Isua dunites is consistent with a mantle origin and a supra-subduction mantle wedge setting, the latter supported by compositional data from nearby mafic rocks. Our results provide independent microstructural data consistent with the operation of Eoarchaean subduction and indicate that microstructural analyses of ancient ultramafic rocks provide a valuable record of Archaean geodynamics

    Genetic polymorphisms in molecules of innate immunity and susceptibility to infection with Wuchereria bancrofti in South India

    Get PDF
    A pilot study was conducted to determine if host genetic factors influence susceptibility and outcomes in human filariasis. Using the candidate gene approach, a well-characterized population in South India was studied using common polymorphisms in six genes (CHIT1, MPO, NRAMP, CYBA, NCF2, and MBL2). A total of 216 individuals from South India were genotyped; 67 normal (N), 63 asymptomatic microfilaria positive (MF+), 50 with chronic lymphatic dysfunction/elephantiasis (CP), and 36 tropical pulmonary eosinophilia (TPE). An association was observed between the HH variant CHIT1 genotype, which correlates with decreased activity and levels of chitotriosidase and susceptibility to filarial infection (MF+ and CP; P = 0.013). The heterozygosity of CHIT1 gene was over-represented in the normal individuals (P = 0.034). The XX genotype of the promoter region in MBL2 was associated with susceptibility to filariasis (P = 0.0093). Since analysis for MBL-sufficient vs insufficient haplotypes was not informative, it is possible the MBL2 promoter association results from linkage disequilibrium with neighboring loci. We have identified two polymorphisms, CHIT1 and MBL2 that are associated with susceptibility to human filarial infection, findings that merit further follow-up in a larger study

    New U-Pb SHRIMP zircon ages for pre-variscan orthogneisses from Portugal and their bearing on the evolution of the Ossa-morena tectonic zone

    Get PDF
    New SHRIMP U-Pb zircon ages for the Portalegre and Alcáçovas orthogneisses document a complex pre-Variscan history for the Iberian basement in Portugal. The available geochemical and geochronological data for the Alcáçovas orthogneiss (ca. 540 Ma) tend to favor its involvement in a Cadomian orogenic event. This is consistent with the development of an active continental margin setting at the end of the Proterozoic and supports a Gondwanan provenance for the Iberian crust. On the other hand, the Ordovician emplacement age obtained for the magmatic precursors of the Portalegre orthogneisses (497 ± 10 Ma) provides additional evidence for the occurrence of rift-related magmatic activity during the Lower Paleozoic

    Evidence for Life on Earth before 3,800 Million Years Ago

    Get PDF
    It is unknown when life first appeared on Earth. The earliest known microfossils (approx. 3,500 Myr before present) are structurally complex, and if it is assumed that the associated organisms required a long time to develop this degree of complexity, then the existence of life much earlier than this can be argued. But the known examples of crustal rocks older than approx. 3,500 Myr have experienced intense metamorphism, which would have obliterated any fragile microfossils contained therein. It is therefore necessary to search for geochemical evidence of past biotic activity that has been preserved within minerals that are resistant to metamorphism. Here we report ion-microprobe measurements of the carbon-isotope composition of carbonaceous inclusions within grains of apatite (basic calcium phosphate) from the oldest known sediment sequences a approx. 3,800 Myr-old banded iron formation from the Isua supracrustal belt, West Greenland, and a similar formation from the nearby Akilia island that is possibly older than 3,850 Myr. The carbon in the carbonaceous inclusions is isotopically light, indicative of biological activity; no known abiotic process can explain the data. Unless some unknown abiotic process exists which is able both to create such isotopically light carbon and then selectively incorporate it into apatite grains, our results provide evidence for the emergence of life on Earth by at least 3,800 Myr before present

    The Pushtashan juvenile suprasubduction zone assemblage of Kurdistan (northeastern Iraq): A Cretaceous (Cenomanian) Neo-Tethys missing link

    Get PDF
    The Pushtashan suprasubduction zone assemblage of volcanic rocks, gabbros, norites and peridotites occurs in the Zagros suture zone, Kurdistan region, northeastern Iraq. Volcanic rocks are dominant in the assemblage and consist mainly of basalt and basaltic andesite flows with interlayered red shale and limestone horizons. Earlier lavas tend to be MORB-like, whereas later lavas display island arc tholeiite to boninitic geochemical characteristics. Tholeiitic gabbros intrude the norites and display fractionation trends typical of crystallisation under low-pressure conditions, whereas the norites display calc-alkaline traits, suggesting their source included mantle metasomatised by fluids released from subducted oceanic crust. Enrichment of Rb, Ba, Sr, Th and the presence of negative Nb anomalies indicate generation in a suprasubduction zone setting. Trondhjemite and granodiorite intrusions are present in the volcanic rocks, gabbros and norites. SHRIMP U-Pb dating of magmatic zircons from a granodiorite yields a mean 206Pb/238U age of 96.0 ± 2.0 Ma (Cenomanian). The initial ɛHf value for the zircons show a narrow range from +12.8 to +15.6, with a weighted mean of +13.90 ± 0.96. This initial value is within error of model depleted mantle at 96 Ma or slightly below that, in the field of arc rocks with minimal contamination by older continental crust. The compositional bimodality of the Pushtashan suprasubduction sequence suggests seafloor spreading during the initiation of subduction, with a lava stratigraphy from early-erupted MORB transitioning into calc-alkaline lavas and finally by 96 Ma intrusion of granodioritic and trondhjemitic bodies with juvenile crustal isotopic signatures. The results confirm another Cretaceous arc remnant preserved as an allochthon within the Iraqi segment of the Cenozoic Zagros suture zone. Implications for the closure of Neo-Tethys are discussed
    • …
    corecore